
Govt Engineering College Ajmer, Rajasthan

Mid Term I (2017-18) Subject: PJ Class: 6th Sem(IT) M.M:10 Time: 1 hr

Q1) Explain the features of java and how java is different from C++.
[2]

Q2) Explain operators and data types in java with examples [2]

Q3) Explain abstract class with the help of supporting programs.
[2]

Q4) Explain static keyword with the help of suitable programs.
[2]

Q5) Explain different uses of super keyword with the help of suitable programs.
[2]

Answer1. Features of Java
There is given many features of java. They are also known as java buzzwords. The Java
Features given below are simple and easy to understand.

1. Simple

2. Object-Oriented

3. Portable

4. Platform independent

5. Secured

6. Robust

7. Architecture neutral

8. Dynamic

9. Interpreted

10. High Performance

11. Multithreaded

12. Distributed

Simple

According to Sun, Java language is simple because:

 syntax is based on C++ (so easier for programmers to learn it after C++).

 removed many confusing and/or rarely-used features e.g., explicit pointers, operator

overloading etc.

 No need to remove unreferenced objects because there is Automatic Garbage

Collection in java.

Object-oriented

Object-oriented means we organize our software as a combination of different types of
objects that incorporates both data and behaviour.

Object-oriented programming(OOPs) is a methodology that simplify software

development and maintenance by providing some rules.

Basic concepts of OOPs are:

1. Object

2. Class

3. Inheritance

4. Polymorphism

5. Abstraction

6. Encapsulation

Platform Independent

A platform is the hardware or software environment in which a program runs.

There are two types of platforms software-based and hardware-based. Java provides
software-based platform.

The Java platform differs from most other platforms in the sense that it is a software-based
platform that runs on the top of other hardware-based platforms. It has two components:

1. Runtime Environment

2. API(Application Programming Interface)

Java code can be run on multiple platforms e.g. Windows, Linux, Sun Solaris, Mac/OS etc.
Java code is compiled by the compiler and converted into bytecode. This bytecode is a
platform-independent code because it can be run on multiple platforms i.e. Write Once and
Run Anywhere(WORA).

Secured

Java is secured because:

o No explicit pointer

o Java Programs run inside virtual machine sandbox

o Classloader: adds security by separating the package for the classes of the local file

system from those that are imported from network sources.

o Bytecode Verifier: checks the code fragments for illegal code that can violate

access right to objects.

o Security Manager: determines what resources a class can access such as reading

and writing to the local disk.

These security are provided by java language. Some security can also be provided by
application developer through SSL, JAAS, Cryptography etc.

Robust

Robust simply means strong. Java uses strong memory management. There are lack of
pointers that avoids security problem. There is automatic garbage collection in java. There
is exception handling and type checking mechanism in java. All these points makes java
robust.

Architecture-neutral

There is no implementation dependent features e.g. size of primitive types is fixed.

In C programming, int data type occupies 2 bytes of memory for 32-bit architecture and 4
bytes of memory for 64-bit architecture. But in java, it occupies 4 bytes of memory for both
32 and 64 bit architectures.

Portable

We may carry the java bytecode to any platform.

High-performance

Java is faster than traditional interpretation since byte code is "close" to native code still

somewhat slower than a compiled language (e.g., C++)

Distributed

We can create distributed applications in java. RMI and EJB are used for creating

distributed applications. We may access files by calling the methods from any machine

on the internet.

Multi-threaded

A thread is like a separate program, executing concurrently. We can write Java programs
that deal with many tasks at once by defining multiple threads. The main advantage of
multi-threading is that it doesn't occupy memory for each thread. It shares a common
memory area. Threads are important for multi-media, Web applications etc.

C++ vs Java
There are many differences and similarities between C++ programming language and Java.
A list of top differences between C++ and Java are given below:

Comparison Index C++ Java

Platform-

independent

C++ is platform-dependent. Java is platform-independent.

Mainly used for C++ is mainly used for system

programming.

Java is mainly used for application

programming. It is widely used in window,

web-based, enterprise and mobile

applications.

Goto C++ supports goto statement. Java doesn't support goto statement.

Multiple

inheritance

C++ supports multiple

inheritance.

Java doesn't support multiple inheritance

through class. It can be achieved by

interfaces in java.

Operator

Overloading

C++ supports operator

overloading.
Java doesn't support operator overloading.

Pointers C++ supports pointers. You can

write pointer program in C++.

Java supports pointer internally. But you

can't write the pointer program in java. It
means java has restricted pointer support

in java.

Compiler and

Interpreter

C++ uses compiler only. Java uses compiler and interpreter both.

Call by Value and

Call by reference

C++ supports both call by

value and call by reference.

Java supports call by value only. There is

no call by reference in java.

Structure and

Union

C++ supports structures and

unions.

Java doesn't support structures and unions.

Thread Support C++ doesn't have built-in

support for threads. It relies on

third-party libraries for thread

support.

Java has built-in thread support.

Answer2.
Java Unary Operator Example: ++ and --

1. class OperatorExample{

2. public static void main(String args[]){

3. int x=10;

4. System.out.println(x++);//10 (11)
5. System.out.println(++x);//12

6. System.out.println(x--);//12 (11)

7. System.out.println(--x);//10

8. }}

Java Unary Operator Example: ~ and !

1. class OperatorExample{
2. public static void main(String args[]){

3. int a=10;

Documentation

comment

C++ doesn't support

documentation comment.

Java supports documentation comment

(/** ... */) to create documentation for

java source code.

Virtual Keyword C++ supports virtual keyword

so that we can decide whether

or not override a function.

Java has no virtual keyword. We can

override all non-static methods by default.

In other words, non-static methods are

virtual by default.

unsigned right

shift >>>

C++ doesn't support >>>

operator.

Java supports unsigned right shift >>>

operator that fills zero at the top for the

negative numbers. For positive numbers, it

works same like >> operator.

Inheritance Tree C++ creates a new inheritance

tree always.

Java uses single inheritance tree always

because all classes are the child of Object

class in java. Object class is the root of

inheritance tree in java.

4. int b=-10;

5. boolean c=true;

6. boolean d=false;

7. System.out.println(~a);//-11 (minus of total positive value which starts from 0)

8. System.out.println(~b);//9 (positive of total minus, positive starts from 0)

9. System.out.println(!c);//false (opposite of boolean value)

10. System.out.println(!d);//true

11. }}

Java Arithmetic Operator Example

1. class OperatorExample{

2. public static void main(String args[]){

3. int a=10;

4. int b=5;
5. System.out.println(a+b);//15

6. System.out.println(a-b);//5

7. System.out.println(a*b);//50

8. System.out.println(a/b);//2

9. System.out.println(a%b);//0

10. }}

Java Shift Operator Example: Left Shift

1. class OperatorExample{

2. public static void main(String args[]){

3. System.out.println(10<<2);//10*2^2=10*4=40

4. System.out.println(10<<3);//10*2^3=10*8=80

5. System.out.println(20<<2);//20*2^2=20*4=80

6. System.out.println(15<<4);//15*2^4=15*16=240

7. }}

Java Shift Operator Example: Right Shift

1. class OperatorExample{

2. public static void main(String args[]){

3. System.out.println(10>>2);//10/2^2=10/4=2
4. System.out.println(20>>2);//20/2^2=20/4=5

5. System.out.println(20>>3);//20/2^3=20/8=2

6. }}

Java Shift Operator Example: >>vs>>>

1. class OperatorExample{

2. public static void main(String args[]){
3. //For positive number, >> and >>> works same

4. System.out.println(20>>2);

5. System.out.println(20>>>2);

6. //For negative number, >>> changes parity bit (MSB) to 0

7. System.out.println(-20>>2);

8. System.out.println(-20>>>2);

9. }}

Output:
5
5
-5
1073741819

Java AND Operator Example: Logical && and Bitwise &

1. class OperatorExample{

2. public static void main(String args[]){

3. int a=10;

4. int b=5;

5. int c=20;

6. System.out.println(a<b&&a<c);//false && true = false

7. System.out.println(a<b&a<c);//false & true = false

8. }}

Output:
false
false

Java AND Operator Example: Logical &&vs Bitwise &

1. class OperatorExample{

2. public static void main(String args[]){

3. int a=10;
4. int b=5;

5. int c=20;

6. System.out.println(a<b&&a++<c);//false && true = false

7. System.out.println(a);//10 because second condition is not checked

8. System.out.println(a<b&a++<c);//false && true = false

9. System.out.println(a);//11 because second condition is checked

10. }}

Output:
false
10
false
11

Java OR Operator Example: Logical || and Bitwise |

1. class OperatorExample{

2. public static void main(String args[]){

3. int a=10;

4. int b=5;

5. int c=20;

6. System.out.println(a>b||a<c);//true || true = true

7. System.out.println(a>b|a<c);//true | true = true

8. //|| vs |
9. System.out.println(a>b||a++<c);//true || true = true

10. System.out.println(a);//10 because second condition is not checked

11. System.out.println(a>b|a++<c);//true | true = true

12. System.out.println(a);//11 because second condition is checked

13. }}

Output:
true
true
true
10
true
11

Java Ternary Operator Example

1. class OperatorExample{

2. public static void main(String args[]){

3. int a=2;

4. int b=5;

5. int min=(a<b)?a:b;

6. System.out.println(min);

7. }}

Output:2

Java Assignment Operator Example

1. class OperatorExample{

2. public static void main(String args[]){

3. int a=10;

4. int b=20;

5. a+=4;//a=a+4 (a=10+4)

6. b-=4;//b=b-4 (b=20-4)

7. System.out.println(a);

8. System.out.println(b);

9. }}

Output:
14

17

Data Types in Java
Data types represent the different values to be stored in the variable. In java, there are two
types of data types:

o Primitive data types

o Non-primitive data types

Data Type Default Value Default size

Boolean false 1 bit

Char '\u0000' 2 byte

Byte 0 1 byte

Short 0 2 byte

Int 0 4 byte

Long 0L 8 byte

Float 0.0f 4 byte

Double 0.0d 8 byte

Answer 3:

Abstract class in Java
A class that is declared with abstract keyword, is known as abstract class in java. It can
have abstract and non-abstract methods (method with body).

Before learning java abstract class, let's understand the abstraction in java first.

Abstraction in Java
Abstraction is a process of hiding the implementation details and showing only
functionality to the user.

Another way, it shows only important things to the user and hides the internal details for
example sending sms, you just type the text and send the message. You don't know the
internal processing about the message delivery.

Abstraction lets you focus on what the object does instead of how it does it.

Ways to achieve Abstraction

There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)

2. Interface (100%

Abstract class in Java
A class that is declared as abstract is known as abstract class. It needs to be extended
and its method implemented. It cannot be instantiated.

Example abstract class

abstract class A{}

abstract method

A method that is declared as abstract and does not have implementation is known as

abstract method

abstract void printStatus();//no body and abstract

Example of abstract class that has abstract method

In this example, Bike the abstract class that contains only one abstract method run. It
implementation is provided by the Honda class.

1. abstract class Bike{

2. abstract void run();

3. }

4. class Honda4 extends Bike{

5. void run(){System.out.println("running safely..");}

6. public static void main(String args[]){

7. Bike obj = new Honda4();

8. obj.run();
9. }

10. }

Output: running safely..

Example2:

1. abstract class Bank{

2. abstract int getRateOfInterest();

3. }

4. class SBI extends Bank{

5. int getRateOfInterest(){return 7;}

6. }

7. class PNB extends Bank{

8. int getRateOfInterest(){return 8;}

9. }

10.

11. class TestBank{

12. public static void main(String args[]){

13. Bank b;

14. b=new SBI();
15. System.out.println("Rate of Interest is: "+b.getRateOfInterest()+" %");

16. b=new PNB();

17. System.out.println("Rate of Interest is: "+b.getRateOfInterest()+" %");

18. }}

Output:
Rate of Interest is: 7 %
Rate of Interest is: 8 %

Answer 4:

The static keyword in java is used for memory management mainly. We can apply java static
keyword with variables, methods, blocks and nested class. The static keyword belongs to the
class than instance of the class.

The static can be:

1. variable (also known as class variable)
2. method (also known as class method)
3. block
4. nested class

Example of static variable

1. //Program of static variable
2.
3. class Student8{
4. int rollno;
5. String name;
6. static String college ="ITS";
7.

8. Student8(int r,String n){
9. rollno = r;
10. name = n;
11. }
12. void display (){System.out.println(rollno+" "+name+" "+college);}
13.
14. public static void main(String args[]){
15. Student8 s1 = new Student8(111,"Karan");
16. Student8 s2 = new Student8(222,"Aryan");
17.
18. s1.display();
19. s2.display();
20. }
21. }

Example of static method

1. //Program of changing the common property of all objects(static field).
2.
3. class Student9{
4. int rollno;
5. String name;
6. static String college = "ITS";
7.
8. static void change(){
9. college = "BBDIT";
10. }
11.
12. Student9(int r, String n){
13. rollno = r;
14. name = n;
15. }
16.
17. void display (){System.out.println(rollno+" "+name+" "+college);}
18.
19. public static void main(String args[]){
20. Student9.change();
21.
22. Student9 s1 = new Student9 (111,"Karan");
23. Student9 s2 = new Student9 (222,"Aryan");
24. Student9 s3 = new Student9 (333,"Sonoo");
25.
26. s1.display();
27. s2.display();
28. s3.display();
29. }
30. }

Output:111 Karan BBDIT
222 yan BBDIT

 333 Sonoo BBDIT

Example of static block

1. class A2{
2. static{System.out.println("static block is invoked");}
3. public static void main(String args[]){
4. System.out.println("Hello main");
5. }
6. }

Output:static block is invoked
 Hello main

Answer 5:

super keyword in java
The super keyword in java is a reference variable which is used to refer immediate parent class
object.

Whenever you create the instance of subclass, an instance of parent class is created implicitly
which is referred by super reference variable.

Usage of java super Keyword

1. super can be used to refer immediate parent class instance variable.
2. super can be used to invoke immediate parent class method.
3. super() can be used to invoke immediate parent class constructor.

1) super is used to refer immediate parent class instance variable.
We can use super keyword to access the data member or field of parent class. It is used if parent class
and child class have same fields.

1. class Animal{
2. String color="white";
3. }
4. class Dog extends Animal{
5. String color="black";
6. void printColor(){
7. System.out.println(color);//prints color of Dog class
8. System.out.println(super.color);//prints color of Animal class
9. }
10. }
11. class TestSuper1{
12. public static void main(String args[]){
13. Dog d=new Dog();
14. d.printColor();
15. }}

Output:
black
white

In the above example, Animal and Dog both classes have a common property
color. If we print color property, it will print the color of current class
by default. To access the parent property, we need to use super keyword.

2) super can be used to invoke parent class method

The super keyword can also be used to invoke parent class method. It should be used if subclass
contains the same method as parent class. In other words, it is used if method is overridden.

1. class Animal{
2. void eat(){System.out.println("eating...");}
3. }
4. class Dog extends Animal{
5. void eat(){System.out.println("eating bread...");}
6. void bark(){System.out.println("barking...");}
7. void work(){
8. super.eat();
9. bark();
10. }
11. }
12. class TestSuper2{
13. public static void main(String args[]){
14. Dog d=new Dog();
15. d.work();
16. }}

Output:

eating...
barking...

In the above example Animal and Dog both classes have eat() method if we call eat() method
from Dog class, it will call the eat() method of Dog class by default because priority is given to
local.

To call the parent class method, we need to use super keyword.

3) super is used to invoke parent class constructor.

The super keyword can also be used to invoke the parent class constructor. Let's see a simple
example:

1. class Animal{
2. Animal(){System.out.println("animal is created");}
3. }
4. class Dog extends Animal{
5. Dog(){
6. super();
7. System.out.println("dog is created");
8. }
9. }
10. class TestSuper3{
11. public static void main(String args[]){
12. Dog d=new Dog();
13. }}

Output:

animal is created
dog is created

